Block-Structured Adaptive Mesh Refinement

Lecture 2
■ Incompressible Navier-Stokes Equations

- Fractional Step Scheme

■ 1-D AMR for "classical" PDE's

- hyperbolic
- elliptic
- parabolic
- Accuracy considerations

Extension to More General Systems

How do we generalize the basic AMR ideas to more general systems?
Incompressible Navier-Stokes equations as a prototype

$$
\begin{gathered}
U_{t}+U \cdot \nabla U+\nabla p=\epsilon \Delta U \\
\nabla \cdot U=0
\end{gathered}
$$

■ Advective transport

- Diffusive transport

■ Evolution subject to a constraint

Vector field decomposition

Hodge decomposition: Any vector field V can be written as

$$
V=U_{d}+\nabla \phi
$$

where $\nabla \cdot U_{d}=0$ and $U \cdot n=0$ on the boundary
The two components, U_{d} and $\nabla \phi$ are orthogonal

$$
\int U \cdot \nabla \phi d x=0
$$

With these properties we can define a projection \mathbf{P}

$$
\mathbf{P}=I-\nabla\left(\Delta^{-1}\right) \nabla .
$$

such that

$$
U_{d}=\mathbf{P} V
$$

with $\mathbf{P}^{2}=\mathbf{P}$ and $\|\mathbf{P}\|=1$

Projection form of Navier-Stokes

Incompressible Navier-Stokes equations

$$
\begin{gathered}
U_{t}+U \cdot \nabla U+\nabla p=\epsilon \Delta U \\
\nabla \cdot U=0
\end{gathered}
$$

Applying the projection to the momentum equation recasts the system as an initial value problem

$$
U_{t}+\mathbf{P}(U \cdot \nabla U-\epsilon \Delta U)=0
$$

Develop a fractional step scheme based on the projection form of equations

Design of the fractional step scheme takes into account issues that will arise in generalizing the methodology to

- More general Low Mach number models
- AMR

Discrete projection

Projection separates vector fields into orthogonal components

$$
V=U_{d}+\nabla \phi
$$

Orthogonality from integration by parts (with $U \cdot n=0$ at boundaries)

$$
\int U \cdot \nabla p d x=-\int \nabla \cdot U p d x=0
$$

Discretely mimic the summation by parts:

$$
\sum U \cdot G P=-\sum(D U) p
$$

In matrix form $D=-G^{T}$
Discrete projection

$$
\begin{gathered}
V=U_{d}+G p \\
D V=D G p \quad U_{d}=V-G p \\
\mathbf{P}=I-G(D G)^{-1} D
\end{gathered}
$$

Spatial discretization

Define discrete variables so that $U, G p$ defined at the same locations and $D U, p$ defined at the same locations.

$$
D: V_{\text {space }} \rightarrow p_{\text {space }} \quad G: p_{\text {space }} \rightarrow V_{\text {space }}
$$

Candidate variable definitions:

Projection discretizations

What is the $D G$ stencil corresponding to the different discretization choices

Non-compact stencils \rightarrow decoupling in matrix
Decoupling is not a problem for incompressible Navier-Stokes with homogeneous boundary conditions but it causes difficulties for

- Nontrivial boundary conditions
- Low Mach number generalizations
- AMR

Fully staggered MAC discretization is problematic for AMR

- Proliferation of solvers
- Algorithm and discretization design issues

Approximate projection methods

Based on AMR considerations, we will define velocities at cell-centers
Discrete projection

$$
\begin{gathered}
V=U_{d}+G p \\
D V=D G p \quad U_{d}=V-G p \\
\mathbf{P}=I-G(D G)^{-1} D
\end{gathered}
$$

Avoid decoupling by replacing inversion of $D G$ in definition of \mathbf{P} by a standard elliptic discretization.

Approximate projection methods

Analysis of projection options indicates staggered pressure has "best" approximate projection properties in terms of stability and accuracy.

$$
\begin{gathered}
D U_{i+1 / 2, j+1 / 2}=\frac{u_{i+1, j+1}+u_{i+1, j}-u_{i, j+1}-u_{i, j}}{2 \Delta x} \\
+\frac{v_{i+1, j+1}+v_{i, j+1}-u_{i+1, j}-u_{i, j}}{2 \Delta y} \\
G p_{i j}=\binom{\frac{p_{i+1 / 2, j+1 / 2}+p_{i+1 / 2, j-1 / 2}-p_{i-1 / 2, j+1 / 2}-p_{i-1 / 2, j-1 / 2}}{2 \Delta x}}{\frac{p_{i+1 / 2, j+1 / 2}+p_{i-1 / 2, j+1 / 2}-p_{i+1 / 2, j-1 / 2}-p_{i-1 / 2, j-1 / 2}}{2 \Delta y}}
\end{gathered}
$$

Projection is given by $\mathbf{P}=I-G(L)^{-1} D$
where L is given by bilinear finite element basis

$$
(\nabla p, \nabla \chi)=(V, \nabla \chi)
$$

Nine point discretization

2nd Order Fractional Step Scheme

First Step:
Construct an intermediate velocity field U^{*} :

$$
\frac{U^{*}-U^{n}}{\Delta t}=-\left[U^{A D V} \cdot \nabla U\right]^{n+\frac{1}{2}}-\nabla p^{n-\frac{1}{2}}+\epsilon \Delta \frac{U^{n}+U^{*}}{2}
$$

Second Step:
Project U^{*} onto constraint and update p. Form

$$
V=\frac{U^{*}}{\Delta t}+G p^{n-\frac{1}{2}}
$$

Solve

$$
L p^{n+\frac{1}{2}}=D V
$$

Set

$$
U^{n+1}=\Delta t\left(V-G p^{n+\frac{1}{2}}\right)
$$

Computation of Advective Derivatives

■ Start with U^{n} at cell centers
■ Predict normal velocities at cell edges using variation of second-order Godunov methodology $\Rightarrow u_{i+1 / 2, j}^{n+1 / 2}, v_{i, j+1 / 2}^{n+1 / 2}$
■ MAC-project the edge-based normal velocities, i.e. solve

$$
D^{M A C}\left(G^{M A C} \psi\right)=D^{M A C} U^{n+1 / 2}
$$

and define normal advection velocities

$$
u_{i+1 / 2, j}^{A D V}=u_{i+1 / 2, j}^{n+1 / 2}-G^{x} \psi, \quad v_{i, j+1 / 2}^{A D V}=v_{i, j+1 / 2}^{n+1 / 2}-G^{y} \psi
$$

■ Use these advection velocities to define $\left[U^{A D V} \cdot \nabla U\right]^{n+1 / 2}$.

$$
\begin{aligned}
& \times: u \\
& \square: v \\
& \bullet: \psi
\end{aligned}
$$

Second-order projection algorithm

Properties
■ Second-order in space and time
■ Robust discretization of advection terms using modern upwind methodology

■ Approximate projection formulation

Algorithm components

- Explicit advection
- Semi-implicit diffusion
- Elliptic projections
- 5-point cell-centered
- 9-point node-centered

How do we generalize AMR to work for projection algorithm?

Look at discretization details in one dimension
■ Revisit hyperbolic

- Elliptic
- Parabolic

Spatial discretizations

Hyperbolic-1d

Consider $\quad U_{t}+F_{x}=0$ discretized with an explicit finite difference scheme:

$$
\frac{U_{i}^{n+1}-U_{i}^{n}}{\Delta t}=\frac{F_{i-1 / 2}^{n+\frac{1}{2}}-F_{i+1 / 2}^{n+\frac{1}{2}}}{\Delta x}
$$

In order to advance the composite solution we must specify how to compute the fluxes:

■ Away from coarse/fine interface the coarse grid sees the average of fine grid values onto the coarse grid

■ Fine grid uses interpolated coarse grid data

- The fine flux is used at the coarse/fine interface

Hyperbolic-composite

One can advance the coarse grid

then advance the fine grid

using "ghost cell data" at the fine level interpolated from the coarse grid data.

This results in a flux mismatch at the coarse/fine interface, which creates an error in U_{J}^{n+1}. The error can be corrected by refluxing, i.e. setting

$$
\Delta x_{c} U_{J}^{n+1}:=\Delta x_{c} U_{J}^{n+1}-\Delta t^{f} F_{J-1 / 2}^{c}+\Delta t^{f} F_{j+1 / 2}^{f}
$$

Before the next step one must average the fine grid solution onto the coarse grid.

Hyperbolic-subcycling

To subcycle in time we advance the coarse grid with Δt^{c}

and advance the fine grid multiple times with Δt^{f}.
The refluxing correction now must
 be summed over the fine grid time steps:

$$
\begin{aligned}
\Delta x_{c} U_{J}^{n+1} & :=\Delta x_{c} U_{J}^{n+1} \\
& -\Delta t^{c} F_{J-1 / 2}^{c}+\sum \Delta t^{f} F_{j+1 / 2}^{f}
\end{aligned}
$$

AMR Discretization algorithms

Design Principles:
■ Define what is meant by the solution on the grid hierarchy.
■ Identify the errors that result from solving the equations on each level of the hierarchy "independently" (motivated by subcycling in time).

- Solve correction equation(s) to "fix" the solution.

■ For subcycling, average the correction in time.

Coarse grid supplies Dirichlet data as boundary conditions for the fine grids.

Errors take the form of flux mismatches at the coarse/fine interface.

Elliptic

Consider $-\phi_{x x}=\rho$ on a locally refined grid:

We discretize with standard centered differences except at j and J. We then define a flux, ϕ_{x}^{c-f}, at the coarse / fine boundary in terms of ϕ^{f} and ϕ^{c} and discretize in flux form with

$$
-\frac{1}{\Delta x_{f}}\left(\phi_{x}^{c-f}-\frac{\left(\phi_{j}-\phi_{j-1}\right)}{\Delta x_{f}}\right)=\rho_{j}
$$

at $i=j$ and

$$
-\frac{1}{\Delta x_{c}}\left(\frac{\left(\phi_{J+1}-\phi_{J}\right)}{\Delta x_{c}}-\phi_{x}^{c-f}\right)=\rho_{J}
$$

at $I=J$.
This defines a perfectly reasonable linear system but ...

Elliptic - composite

Suppose we solve

$$
-\frac{1}{\Delta x_{c}}\left(\frac{\left(\bar{\phi}_{I+1}-\bar{\phi}_{I}\right)}{\Delta x_{c}}-\frac{\left(\bar{\phi}_{I}-\bar{\phi}_{I-1}\right)}{\Delta x_{c}}\right)=\rho_{I}
$$

at all coarse grid points I and then solve

$$
-\frac{1}{\Delta x_{f}}\left(\frac{\left(\bar{\phi}_{i+1}-\bar{\phi}_{i}\right)}{\Delta x_{f}}-\frac{\left(\bar{\phi}_{i}-\bar{\phi}_{i-1}\right)}{\Delta x_{f}}\right)=\rho_{i}
$$

at all fine grid points $i \neq j$ and use the "correct" stencil at $i=j$, holding the coarse grid values fixed.

Elliptic - synchronization

The composite solution defined by $\bar{\phi}^{c}$ and $\bar{\phi}^{f}$ satisfies the composite equations everywhere except at J .

The error is manifest in the difference between ϕ_{x}^{c-f} and $\frac{\left(\bar{\phi}_{J}-\bar{\phi}_{J-1}\right)}{\Delta x_{c}}$.
Let $e=\phi-\bar{\phi}$. Then $-\Delta^{h} e=0$ except at $I=J$ where

$$
-\Delta^{h} e=\frac{1}{\Delta x_{c}}\left(\frac{\left(\bar{\phi}_{J}-\bar{\phi}_{J-1}\right)}{\Delta x_{c}}-\phi_{x}^{c-f}\right)
$$

Solve the composite for e and correct

- $\phi^{c}=\bar{\phi}^{c}+e^{c}$
- $\phi^{f}=\bar{\phi}^{f}+e^{f}$

The resulting solution is the same as solving the composite operator

Parabolic - composite

Consider $u_{t}+f_{x}=\varepsilon u_{x x}$ and the semi-implicit time-advance algorithm:

$$
\frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}+\frac{f_{i+1 / 2}^{n+\frac{1}{2}}-f_{i-1 / 2}^{n+\frac{1}{2}}}{\Delta x}=\frac{\varepsilon}{2}\left(\left(\Delta^{h} u^{n+1}\right)_{i}+\left(\Delta^{h} u^{n}\right)_{i}\right)
$$

Again if one advances the coarse and fine levels separately, a mismatch in the flux at the coarse-fine interface results.

Let \bar{u}^{c-f} be the initial solution from separate evolution

Parabolic - synchronization

The difference e^{n+1} between the exact composite solution u^{n+1} and the solution \bar{u}^{n+1} found by advancing each level separately satisfies

$$
\begin{gathered}
\left(I-\frac{\varepsilon \Delta t}{2} \Delta^{h}\right) e^{n+1}=\frac{\Delta t}{\Delta x_{c}}(\delta f+\delta D) \\
\Delta t \delta f=\Delta t\left(-\bar{f}_{J-1 / 2}+f_{j+1 / 2}\right) \\
\Delta t \delta D=\frac{\varepsilon \Delta t}{2}\left(\left(\bar{u}_{x, J-1 / 2}^{c, n}+\bar{u}_{x, J-1 / 2}^{c, n+1}\right)-\left(u_{x}^{\subset-f, n}+u_{x}^{c-f, n+1}\right)\right)
\end{gathered}
$$

Source term is localized to to coarse cell at coarse / fine boundary Updating $u^{n+1}=\bar{u}^{n+1}+e$ again recovers the exact composite solution

Parabolic - subcycling

Advance coarse grid
Advance fine grid r times

The refluxing correction now must be summed over the fine grid time steps:

$$
\begin{aligned}
&\left(I-\frac{\varepsilon \Delta t^{c}}{2} \Delta^{h}\right) e^{n+1}=\frac{\Delta t^{c}}{\Delta x_{c}}(\delta f+\delta D) \\
& \Delta t^{c} \delta f=-\Delta t^{c} \bar{f}_{J-1 / 2}+\sum \Delta t^{f} f_{j+1 / 2} \\
& \Delta t^{c} \delta D=\frac{\varepsilon \Delta t^{c}}{2}\left(\bar{u}_{x, J-1 / 2}^{c, n}+\bar{u}_{x, J-1 / 2}^{c, n+1}\right) \\
&-\sum \frac{\varepsilon \Delta t^{f}}{2}\left(u_{x}^{c-f, n}+u_{x}^{c-f, n+1}\right)
\end{aligned}
$$

Spatial accuracy - cell-centered

Modified equation gives

$$
\psi^{c o m p}=\psi^{e x a c t}+\Delta^{-1} \tau^{c o m p}
$$

where τ is a local function of the solution derivatives.
Simple interpolation formulae are not sufficiently accurate for second-order operators

Convergence results

Local Truncation Error

D	Norm	Δx	$\left\\|L\left(U_{e}\right)-\rho\right\\|_{h}$	$\left\\|L\left(U_{e}\right)-\rho\right\\|_{2 h}$	R	P
2	L_{∞}	$1 / 32$	$1.57048 \mathrm{e}-02$	$2.80285 \mathrm{e}-02$	1.78	0.84
2	L_{∞}	$1 / 64$	$8.08953 \mathrm{e}-03$	$1.57048 \mathrm{e}-02$	1.94	0.96
3	L_{∞}	$1 / 16$	$2.72830 \mathrm{e}-02$	$5.60392 \mathrm{e}-02$	2.05	1.04
3	L_{∞}	$1 / 32$	$1.35965 \mathrm{e}-02$	$2.72830 \mathrm{e}-02$	2.00	1.00
3	L_{1}	$1 / 32$	$8.35122 \mathrm{e}-05$	$3.93200 \mathrm{e}-04$	4.70	2.23

Solution Error

D	Norm	Δx	$\left\\|U_{h}-U_{e}\right\\|$	$\left\|\mid U_{2 h}-U_{e} \\|\right.$	R	P
2	L_{∞}	$1 / 32$	$5.13610 \mathrm{e}-06$	$1.94903 \mathrm{e}-05$	3.79	1.92
2	L_{∞}	$1 / 64$	$1.28449 \mathrm{e}-06$	$5.13610 \mathrm{e}-06$	3.99	2.00
3	L_{∞}	$1 / 16$	$3.53146 \mathrm{e}-05$	$1.37142 \mathrm{e}-04$	3.88	1.96
3	L_{∞}	$1 / 32$	$8.88339 \mathrm{e}-06$	$3.53146 \mathrm{e}-05$	3.97	1.99

$$
\psi^{\text {computed }}=\psi^{\text {exact }}+L^{-1} \bar{\tau}
$$

Solution operator smooths the error

Spatial accuracy - nodal

Node-based solvers:

■ Symmetric self-adjoint matrix

- Accuracy properties given by approximation theory

Solving coarse grid then solving fine grid with interpolated Dirichlet boundary conditions leads to a flux mismatch at boundary

Synchronization corrects mismatch in fluxes at coarse / fine boundaries.
Correction equations match the structure of the process they are correcting.

■ For explicit discretizations of hyperbolic PDE's the correction is an explicit flux correction localized at the coarse/fine interface.

■ For an elliptic equation (e.g., the projection) the source is localized on the coarse/fine interface but an elliptic equation is solved to distribute the correction through the domain. Discrete analog of a layer potential problem.

■ For Crank-Nicolson discretization of parabolic PDE's, the correction source is localized on the coarse/fine interface but the correction equation diffuses the correction throughout the domain.

Efficiency considerations

For the elliptic solves, we can substitute the following for a full composite solve with no loss of accuracy

■ Solve $\Delta \psi^{c}=g^{c}$ on coarse grid
■ Solve $\Delta \psi^{f}=g^{f}$ on fine grid using interpolated Dirichlet boundary conditions

■ Evaluate composite residual on the coarse cells adjacent to the fine grids

■ Solve for correction to coarse and fine solutions on the composite hierarchy

Because of the smoothing properties of the elliptic operator, we can, in some cases, substitute either a two-level solve or a coarse level solve for the full composite operator to compute the correction to the solution.

- Source is localized at coarse cells at coares / fine boundary

■ Solution is a discrete harmonic function in interior of fine grid

- This correction is exact in 1-D

