

Block-Structured Adaptive Mesh Refinement

Lecture 2

- Incompressible Navier-Stokes Equations
 - Fractional Step Scheme
- 1-D AMR for "classical" PDE's
 - hyperbolic
 - elliptic
 - parabolic
- Accuracy considerations

Extension to More General Systems

How do we generalize the basic AMR ideas to more general systems?

Incompressible Navier-Stokes equations as a prototype

$$U_t + U \cdot \nabla U + \nabla p = \epsilon \Delta U$$

$$\nabla \cdot U = 0$$

- Advective transport
- Diffusive transport
- Evolution subject to a constraint

Vector field decomposition

Hodge decomposition: Any vector field V can be written as

 $V = U_d + \nabla \phi$

where $\nabla \cdot U_d = 0$ and $U \cdot n = 0$ on the boundary

The two components, U_d and $\nabla \phi$ are orthogonal

$$\int U \cdot \nabla \phi \ dx = 0$$

With these properties we can define a projection ${\bf P}$

$$\mathbf{P} = I - \nabla(\Delta^{-1})\nabla \cdot$$

such that

$$U_d = \mathbf{P}V$$

with $\mathbf{P}^2 = \mathbf{P}$ and $||\mathbf{P}|| = 1$

Projection form of Navier-Stokes

Incompressible Navier-Stokes equations

$$U_t + U \cdot \nabla U + \nabla p = \epsilon \Delta U$$

 $\nabla \cdot U = 0$

Applying the projection to the momentum equation recasts the system as an initial value problem

$$U_t + \mathbf{P}(U \cdot \nabla U - \epsilon \Delta U) = 0$$

Develop a fractional step scheme based on the projection form of equations

Design of the fractional step scheme takes into account issues that will arise in generalizing the methodology to

- More general Low Mach number models
- AMR

Discrete projection

Projection separates vector fields into orthogonal components

$$V = U_d + \nabla \phi$$

Orthogonality from integration by parts (with $U \cdot n = 0$ at boundaries)

$$\int U \cdot \nabla p \, dx = -\int \nabla \cdot U \, p \, dx = 0$$

Discretely mimic the summation by parts:

$$\sum U \cdot GP = -\sum (DU) \ p$$

In matrix form $D = -G^T$

Discrete projection

$$V = U_d + Gp$$
$$DV = DGp \quad U_d = V - Gp$$
$$\mathbf{P} = I - G(DG)^{-1}D$$

Bell Lecture 2 - p. 5/27

Spatial discretization

CCSE Berkeley Lab

Define discrete variables so that U, Gp defined at the same locations and DU, p defined at the same locations.

 $D: V_{space} \rightarrow p_{space} \quad G: p_{space} \rightarrow V_{space}$

Candidate variable definitions:

Projection discretizations

What is the DG stencil corresponding to the different discretization choices

Non-compact stencils \rightarrow decoupling in matrix

Decoupling is not a problem for incompressible Navier-Stokes with homogeneous boundary conditions but it causes difficulties for

- Nontrivial boundary conditions
- Low Mach number generalizations
- AMR

Fully staggered MAC discretization is problematic for AMR

- Proliferation of solvers
- Algorithm and discretization design issues

Approximate projection methods

Based on AMR considerations, we will define velocities at cell-centers

Discrete projection

Avoid decoupling by replacing inversion of DG in definition of \mathbf{P} by a standard elliptic discretization.

Approximate projection methods

Analysis of projection options indicates staggered pressure has "best" approximate projection properties in terms of stability and accuracy.

$$DU_{i+1/2,j+1/2} = \frac{u_{i+1,j+1} + u_{i+1,j} - u_{i,j+1} - u_{i,j}}{2\Delta x} + \frac{v_{i+1,j+1} + v_{i,j+1} - u_{i+1,j} - u_{i,j}}{2\Delta y}$$

$$Gp_{ij} = \begin{pmatrix} \frac{p_{i+1/2,j+1/2} + p_{i+1/2,j-1/2} - p_{i-1/2,j+1/2} - p_{i-1/2,j-1/2}}{2\Delta x} \\ \frac{p_{i+1/2,j+1/2} + p_{i-1/2,j+1/2} - p_{i+1/2,j-1/2} - p_{i-1/2,j-1/2}}{2\Delta y} \end{pmatrix}$$

Projection is given by $\mathbf{P} = I - G(L)^{-1}D$

where L is given by bilinear finite element basis

$$(\nabla p, \nabla \chi) = (V, \nabla \chi)$$

Nine point discretization

2nd Order Fractional Step Scheme

First Step:

Construct an intermediate velocity field U^* :

$$\frac{U^* - U^n}{\Delta t} = -[U^{ADV} \cdot \nabla U]^{n + \frac{1}{2}} - \nabla p^{n - \frac{1}{2}} + \epsilon \Delta \frac{U^n + U^*}{2}$$

Second Step:

Project U^* onto constraint and update p. Form

$$V = \frac{U^*}{\Delta t} + Gp^{n-\frac{1}{2}}$$

Solve

$$Lp^{n+\frac{1}{2}} = DV$$

Set

$$U^{n+1} = \Delta t (V - Gp^{n+\frac{1}{2}})$$

Computation of Advective Derivatives

- Start with U^n at cell centers
- Predict normal velocities at cell edges using variation of second-order Godunov methodology $\Rightarrow u_{i+1/2,j}^{n+1/2}, v_{i,j+1/2}^{n+1/2}$
- MAC-project the edge-based normal velocities, i.e. solve

$$D^{MAC}(G^{MAC}\psi) = D^{MAC}U^{n+1/2}$$

and define normal advection velocities

$$u_{i+1/2,j}^{ADV} = u_{i+1/2,j}^{n+1/2} - G^x \psi, \quad v_{i,j+1/2}^{ADV} = v_{i,j+1/2}^{n+1/2} - G^y \psi$$

• Use these advection velocities to define $[U^{ADV} \cdot \nabla U]^{n+1/2}$.

Second-order projection algorithm

Properties

- Second-order in space and time
- Robust discretization of advection terms using modern upwind methodology
- Approximate projection formulation

Algorithm components

- Explicit advection
- Semi-implicit diffusion
- Elliptic projections
 - 5-point cell-centered
 - 9-point node-centered

How do we generalize AMR to work for projection algorithm?

Look at discretization details in one dimension

- Revisit hyperbolic
- Elliptic
- Parabolic

Spatial discretizations

Hyperbolic-1d

Consider $U_t + F_x = 0$ discretized with an explicit finite difference scheme:

$$\frac{U_i^{n+1} - U_i^n}{\Delta t} = \frac{F_{i-1/2}^{n+\frac{1}{2}} - F_{i+1/2}^{n+\frac{1}{2}}}{\Delta x}$$

In order to advance the composite solution we must specify how to compute the fluxes:

- Away from coarse/fine interface the coarse grid sees the average of fine grid values onto the coarse grid
- Fine grid uses interpolated coarse grid data
- The fine flux is used at the coarse/fine interface

Hyperbolic-composite

One can advance the coarse grid

 $\Delta t^{f} \underbrace{\times \times \times \times}_{j-1 \quad j \quad (j+1)} \bullet \bullet \bullet$

using "ghost cell data" at the fine level interpolated from the coarse grid data.

This results in a flux mismatch at the coarse/fine interface, which creates an error in U_J^{n+1} . The error can be corrected by refluxing, i.e. setting

$$\Delta x_{c} U_{J}^{n+1} := \Delta x_{c} U_{J}^{n+1} - \Delta t^{f} F_{J-1/2}^{c} + \Delta t^{f} F_{j+1/2}^{f}$$

Before the next step one must average the fine grid solution onto the coarse grid.

Hyperbolic-subcycling

CCSE BERKELEY LAB

To subcycle in time we advance the coarse grid with Δt^c

and advance the fine grid multiple times with Δt^{f} .

The refluxing correction now must be summed over the fine grid time steps:

$$\Delta x_c U_J^{n+1} := \Delta x_c U_J^{n+1}$$
$$-\Delta t^c F_{J-1/2}^c + \sum \Delta t^f F_{j+1/2}^f$$

AMR Discretization algorithms

Design Principles:

- Define what is meant by the *solution* on the grid hierarchy.
- Identify the errors that result from solving the equations on each level of the hierarchy "independently" (motivated by subcycling in time).
- Solve correction equation(s) to "fix" the solution.
- For subcycling, average the correction in time.

Coarse grid supplies Dirichlet data as boundary conditions for the fine grids.

Errors take the form of flux mismatches at the coarse/fine interface.

Elliptic

Consider $-\phi_{xx} = \rho$ on a locally refined grid:

We discretize with standard centered differences except at j and J. We then define a flux, ϕ_x^{c-f} , at the coarse / fine boundary in terms of ϕ^f and ϕ^c and discretize in flux form with

$$-\frac{1}{\Delta x_f} \left(\phi_x^{c-f} - \frac{(\phi_j - \phi_{j-1})}{\Delta x_f} \right) = \rho_j$$

at i = j and $-\frac{1}{\Delta x_c} \left(\frac{(\phi_{J+1} - \phi_J)}{\Delta x_c} - \phi_x^{c-f} \right) = \rho_J$

at I = J.

This defines a perfectly reasonable linear system but ...

Suppose we solve

$$-\frac{1}{\Delta x_c} \left(\frac{(\overline{\phi}_{I+1} - \overline{\phi}_I)}{\Delta x_c} - \frac{(\overline{\phi}_I - \overline{\phi}_{I-1})}{\Delta x_c} \right) = \rho_I$$

at all coarse grid points I and then solve

$$-\frac{1}{\Delta x_f} \left(\frac{(\overline{\phi}_{i+1} - \overline{\phi}_i)}{\Delta x_f} - \frac{(\overline{\phi}_i - \overline{\phi}_{i-1})}{\Delta x_f} \right) = \rho_i$$

at all fine grid points $i \neq j$ and use the "correct" stencil at i = j, holding the coarse grid values fixed.

Elliptic – synchronization

The composite solution defined by $\overline{\phi}^c$ and $\overline{\phi}^f$ satisfies the composite equations everywhere except at J.

The error is manifest in the difference between ϕ_x^{c-f} and $\frac{(\overline{\phi}_J - \overline{\phi}_{J-1})}{\Delta x_c}$.

Let $e = \phi - \overline{\phi}$. Then $-\Delta^h e = 0$ except at I = J where

$$-\Delta^{h} e = \frac{1}{\Delta x_{c}} \left(\frac{(\overline{\phi}_{J} - \overline{\phi}_{J-1})}{\Delta x_{c}} - \phi_{x}^{c-f} \right)$$

Solve the composite for *e* and correct

•
$$\phi^c = \overline{\phi}^c + e^c$$

•
$$\phi^f = \overline{\phi}^f + e^f$$

The resulting solution is the same as solving the composite operator

Parabolic – composite

CCSE Berkeley Lab

Consider $u_t + f_x = \varepsilon u_{xx}$ and the semi-implicit time-advance algorithm:

Again if one advances the coarse and fine levels separately, a mismatch in the flux at the coarse-fine interface results.

Let \overline{u}^{c-f} be the initial solution from separate evolution

Parabolic – synchronization

The difference e^{n+1} between the exact composite solution u^{n+1} and the solution \overline{u}^{n+1} found by advancing each level separately satisfies

$$\left(I - \frac{\varepsilon \Delta t}{2} \Delta^h\right) e^{n+1} = \frac{\Delta t}{\Delta x_c} (\delta f + \delta D)$$

$$\Delta t \,\delta f = \Delta t \,\left(-\overline{f}_{J-1/2} + f_{j+1/2}\right)$$
$$\Delta t \,\delta D = \frac{\varepsilon \Delta t}{2} \left((\overline{u}_{x,J-1/2}^{c,n} + \overline{u}_{x,J-1/2}^{c,n+1}) - (u_x^{c-f,n} + u_x^{c-f,n+1}) \right)$$

Source term is localized to to coarse cell at coarse / fine boundary Updating $u^{n+1} = \overline{u}^{n+1} + e$ again recovers the exact composite solution

Parabolic – subcycling

The refluxing correction now must be summed over the fine grid time steps:

$$\left(I - \frac{\varepsilon \Delta t^c}{2} \Delta^h\right) e^{n+1} = \frac{\Delta t^c}{\Delta x_c} (\delta f + \delta D)$$

$$\Delta t^{c} \,\delta f = -\Delta t^{c} \,\overline{f}_{J-1/2} + \sum \Delta t^{f} f_{j+1/2}$$

$$\Delta t^{c} \,\delta D = \frac{\varepsilon \Delta t^{c}}{2} (\overline{u}_{x,J-1/2}^{c,n} + \overline{u}_{x,J-1/2}^{c,n+1})$$

$$- \sum \frac{\varepsilon \Delta t^{f}}{2} (u_{x}^{c-f,n} + u_{x}^{c-f,n+1})$$

11111

CCSE

Spatial accuracy – cell-centered

Modified equation gives

$$\psi^{comp} = \psi^{exact} + \Delta^{-1} \tau^{comp}$$

where τ is a *local* function of the solution derivatives.

Simple interpolation formulae are not sufficiently accurate for second-order operators

Convergence results

Local Truncation Error

D	Norm	Δx	$ L(U_e) - \rho _h$	$ L(U_e) - \rho _{2h}$	R	P
2	L_{∞}	1/32	1.57048e-02	2.80285e-02	1.78	0.84
2	L_{∞}	1/64	8.08953e-03	1.57048e-02	1.94	0.96
3	L_{∞}	1/16	2.72830e-02	5.60392e-02	2.05	1.04
3	L_{∞}	1/32	1.35965e-02	2.72830e-02	2.00	1.00
3	L_1	1/32	8.35122e-05	3.93200e-04	4.70	2.23

Solution Error

D	Norm	Δx	$ U_h - U_e $	$ U_{2h} - U_e $	R	P
2	L_{∞}	1/32	5.13610e-06	1.94903e-05	3.79	1.92
2	L_{∞}	1/64	1.28449e-06	5.13610e-06	3.99	2.00
3	L_{∞}	1/16	3.53146e-05	1.37142e-04	3.88	1.96
3	L_{∞}	1/32	8.88339e-06	3.53146e-05	3.97	1.99

$$\psi^{computed} = \psi^{exact} + L^{-1}\overline{\tau}$$

Solution operator smooths the error

Node-based solvers:

- Symmetric self-adjoint matrix
- Accuracy properties given by approximation theory

Recap

Solving coarse grid then solving fine grid with interpolated Dirichlet boundary conditions leads to a flux mismatch at boundary

Synchronization corrects mismatch in fluxes at coarse / fine boundaries.

Correction equations match the structure of the process they are correcting.

- For explicit discretizations of hyperbolic PDE's the correction is an explicit flux correction localized at the coarse/fine interface.
- For an elliptic equation (e.g., the projection) the source is localized on the coarse/fine interface but an elliptic equation is solved to distribute the correction through the domain. Discrete analog of a layer potential problem.
- For Crank-Nicolson discretization of parabolic PDE's, the correction source is localized on the coarse/fine interface but the correction equation diffuses the correction throughout the domain.

Efficiency considerations

For the elliptic solves, we can substitute the following for a full composite solve with no loss of accuracy

- Solve $\Delta \psi^c = g^c$ on coarse grid
- Solve $\Delta \psi^f = g^f$ on fine grid using interpolated Dirichlet boundary conditions
- Evaluate composite residual on the coarse cells adjacent to the fine grids
- Solve for correction to coarse and fine solutions on the composite hierarchy

Because of the smoothing properties of the elliptic operator, we can, in some cases, substitute either a two-level solve or a coarse level solve for the full composite operator to compute the *correction* to the solution.

- Source is localized at coarse cells at coares / fine boundary
- Solution is a discrete harmonic function in interior of fine grid
- This correction is exact in 1-D