
Table 1: Wave propagation scheme
scheme acronym full scheme name primary reference implementation grid

Claw Wave propagation algorithm on mapped grids LeVeque (2002) two-patch sphere grid

A standard test case suite for 2D linear transport on the sphere:
results from 17 state-of-the-art schemes

Contribution : D. Calhoun, Boise State University

3 Transport schemes

3.4 Other grids

3.4.1 Wave-Propagation algorithm on the two-patch sphere grid

The Claw scheme is based on the wave-propagation algorithms described by LeVeque in [4] and imple-
mented in the Clawpack package [3]. The sphere grid used for the computations is described in [2] and
is based on a novel mapping which transforms a single logically rectangular uniform Cartesian grid to the
sphere. Our grid is similar to the cubed-sphere grid in that it is made up of N ×N grid patches stretched
to fit the sphere. Whereas the cubed-sphere uses six square patches, our grid consists of two square patches,
one for each hemisphere, as shown in Figure 1. The computational grid is a single logically Cartesian 2N×N
grid mapped to the sphere via a simple mapping T(ξ, η) [2]. The resulting finite-volume mesh cells are nearly
uniform in size. The effective angle for this mesh is λeff = N/90.

Figure 1: The two-patch sphere grid used by the Claw scheme.

An advantage of this mapping from a single rectangle to the sphere is that standard block-structured
adaptive mesh refinement (AMR) algorithms can be applied. This requires handling the boundary conditions
properly, which are similar but not identical to periodic boundary conditions. The AMR algorithms in
Clawpack have been extended to work on these grids; see [1] for a discussion of the boundary conditions
and convergence tests for shallow water equations on the sphere.

The wave-propagation algorithm, as implemented in Clawpack can solve equations in both conservation
(flux) form and non-conservative (advective) form. Results presented here are based on solving

φt + u · ∇φ = 0 (1)

In the nondivergent case, this form of the equation is equivalent to the conservative form. In the divergent
case, this form, along with mass conservation, is equivalent to the conservative form. In both cases, we
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specify a normal velocity at cell edges. In the nondivergent case, we obtain the average normal velocity at
mesh cell edges by differencing a streamfunction evaluated at mesh cell corners. By using the streamfunction
in this manner, we exactly preserve the non-divergence of the wind field at the discrete level. As a result,
we do not need to evolve the constant density field ρ, since the the wave propagation algorithm, when used
in advective form, preserves constant tracer fields at the discrete level. For the divergent wind field, we
compute the normal velocity at a cell edge by projecting the velocity vector onto the edge normal vector.

The wave-propagation algorithm can be run in first order or second order mode, with or without limiters,
and as either a split scheme or an unsplit scheme. Here, we use the second order, unsplit scheme with the
centralized monotonized difference limiter described in [4]. The maximum CFL for the wave propagation
algorithm is one. All of our results for the benchmark exercises were run at a CFL of 0.95.

Computationally, the wave-propagation algorithm can be made very efficient when several tracers are
present. For both the conservative and non-conservative form, the wave propagation algorithm is based
on solving Riemann problems at mesh cell edges. Since all of the tracers are traveling at the same wave
speed, the results of the Riemann problem can be combined into a single wave. This avoids the need to
iterate over seperate waves when updating fluctuations and computing second order correction terms. Also,
by combining tracer fields into a single wave, we can save on storage that would otherwise be required for
storing seperate waves. The stencil required to update a given mesh cell involves eight neighboring cells
in the unlimited case and an additional 12 neighboring cells in the limited case. Therefore, the maximum
stencil size required to update a given mesh cell involves all but the corners cells of a 5×5 block surrounding
the mesh cell.

Details of our scheme can be found in [4] and [2].
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